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In previous work we developed a thermodynamic formalism for the Bernoulli
convolution associated with the golden mean, and we obtained by perturbative
analysis the existence, regularity, and strict convexity of the pressure F ( B ) in a
neighborhood of B = 0. This gives the existence of a multifractal spectrum f(a)
in a neighborhood of the almost sure value a =f(a) = 0, 9957.... In the present
paper, by a direct study of the Ruelle-Perron-Frobenius operator associated
with the random unbounded matrix product arising in our problem, we can
prove the regularity of the pressure F ( B ) for (at least) B( — 1/2, +00). This
yields the interval of the singularity spectrum between the minimal value of the
dimension of v, amin = 0.94042..., and the almost sure value, aa s = 0.9957....
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INTRODUCTION

Let e1, e2 be a sequence of independent random variables each taking the
values +1 and — 1 with equal probability. The probability distribution of
the random variable (1 — y) E°n=0eny

n, 0 < y < l , defines a measure vy

which is called an Infinitely Convolved Bernoulli Measure or simply a
Bernoulli Convolution. For y> 1/2 it is a difficult, old and not yet com-
pletely solved problem to decide on the nature of vy. P. Erdos proved the
singular continuous nature of v,, if y-1 is a Pisot number (that is an
algebraic integer whose conjugates lie inside the unit circle). Recently
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B. Solomiak proved that for almost all ye [1/2, 1] vy is absolutely con-
tinuous (see ref. 5 for more details and references).

In ref. 5 we concentrated on the singularity of vy in the case where
y the golden mean. We first studied, following Young,(9) the existence of the
vr almost sure limit

where I(x) is an interval centered at x, and our first result was an explicit
formula for the Hausdorff dimension of the measure vr, namely HD(vy) = S.

Following Alexander and Yorke, we introduced the (non-inversible)
map (x, y) -> T(x, y):

with y + y2 = 1.
Note that this model offers a situation which is very different from the

Axiom A case for example: T is an endomorphism of the square which
possesses two expanding directions.

Let A = [ l - y , y ] x [ l / 2 , l ] , B= [y, 1] x [1/2, 1 ], C=[0, l - y ] x
[0, 1/2], D= [ 1 _ - y , y ]x [0 , 1/2]. Since y + y2 = 1, P0 = {A,B,C,D} is a
Markov partition with compatibilty rules: A -» C; B -»A, B, D; C -» A, C, D;
D -> B. That is, every point (x, y) e Xis coded by a sequence a(x , y) = a0al • • •
with a i , e { A , B , C , D } such that (x, y)ea0, T(x, y)ea1,,..., Tn(x, y ) ea n , . . .
and viceversa any compatible sequence a o a 1 , - - - defines a unique point
(x, y)eX. The invariance relations: u ( T 0

- 1 I ) = 1 / 2 u ( I ) , u ( T - 1
1 I ) = 1/2u(I) for

Ie[0, l ]x [0 , 1] and the above Markov compatibility rules uniquely
define the maximum entropy Markov invariant measure u.

One can prove that vy is the transverse measure of the measure u. We
then studied the relations between the Markov partition P0 for T and the
y-adic partition of the .x-axis (i.e., the partition generated by the expansion
of x e [0, 1] on the basis provided by the powers of y). The vy mesure of
a y-adic interval is computed by counting the rectangles of the Markov
partition which project on it. The dimension of the measure vy is therefore
associated to the growth of a random products of Markov matrices. These
(unbounded) matrices are
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and M(n) = M(xn) where x n e F - n P 0 .
We then considered the space XN of the trajectories {xn}neN of

the Markov process with distribution Pu such that if xn(x) = xn then
pu[xn =i]=u(i) and P u [x n +1 i = j \ x n = i] = P ( j \ i ) , where the initial dis-
tribution u and the transition matrix P ( i \ j}ieN,jeN are described in ref. 5,
and are such that if n 1 - - - n q is the coding of a y-adic interval, then its
vy-measure equals |M(x n q ) • • • M(xn 1)1/2 ( x

n 1
+ . . . x n q ) and its length equals

l(xn1) + ••• +l(xnq ) where l(x i,) = logy |x
i
|+ 1. Our dimension formula, that

is, the limit in (1) then appears in a natural way as a version of the
Furstenberg-Guivarch formula, (cf. ref. 5, for more details).

Then we studied the local exponent:

if the limit exists. Let Ba= {x: a(.x) = a} and f(a) the Hausdorff dimension
of Bx. Multifractal analysis is concerned with the study of {(a, f((a))}, the
"dimension spectrum" of the measure vy.

Consider a dynamical system (Q, T,u). Thermodynamic formalism(8)

provides a by now "classical" method(3) to analyze its dimension spectrum.
Let Zn = E ieAn v f ( I ) B where An is an exponentially fast (with n) decreasing
partition of the system, and let us assume that the thermodynamic limit
limn_00(1/n) logZn exist and define a regular function ("pressure") F(B) .
Then, if we denote by f(a) the Legendre transform of F(B), that is
infB(aB — F ( B ) ) , then the large deviations theorem states that # {I: v y ( I ) ~
|I|a} behaves as exp(nf(a)), for large n. This result would allow us to show
that actuallyf(a) =f(a), that is,f(a) is the Hausdorff dimension of Ba„, the
set where the measure has a power law singularity of strength a. This gives
the meaning of F(a) in terms of u, and moreover provides a method to
compute f(a) as Legendre transform of F(B). Our model does not allow us
to work out estimates on the measure of uniform atoms and therefore we
chose to consider a joint partition function Gn(B, F) = E I e A n u ( I ) B f(I)F-,
the thermodynamic limit of which can also be studied via large deviations
theorem. We dealed with a two-dimensional version of it, because of the
joint fluctuations of masses and volumes. Consequently, the dimension of
the set of trajectories where the measure has a singularity of strength a
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turns out to be the Legendre transform f(a) of the (unique) function F
realizing the "good" (mass/volume) section of the two-dimensional problem.

Note that f(a), while obtained as a section of a joint large deviation
function f(a, l) is intrinsic to the dynamical system (Q, f ,u). Indeed, if the
pointwise limit

exists and is equal to a on a set Ba of points x, then the limit exists and
is the same for all sub-sequence of intervals containing xeBx, whose
diameter goes to zero. We can then associate to Ba its Hausdorff dimension
f(a). Our main result on the multifractal analysis of the Bernoulli convolu-
tion was the following theorem (see ref. 5):

Theorem. Let

and pS(a. + S) its projection on [0, 1 ], that is the set where the local expo-
nent (3) of the measure VY is a + S. Then, for |a| sufficiently small

where f is the Legendre transform of the above defined F.

There are very few examples where the mathematics of the multifractal
spectrum is well understood: our model is perhaps the first for which it has
been possible to obtain a result on multifractal analysis of vy—and then
of u.—for a repelling dynamical system in dimension two. However, the
proof relies on perturbative analysis which is conclusive only near zero. As
in classical random matrix products theory, we obtained the existence,
regularity, and strict convexity of the pressure F(B) only in a neighborhood
of B = 0, that is, the existence of a multifractal spectrum f(a) in a
neighborhood of the almost sure value a = f(a) = 0, 9957....

In the present paper, by a direct study of the Ruelle-Perron-Frobenius
operator associated to the random unbounded matrix product arising in
our problem, we can prove the regularity of the pressure F (B ) for (at least)
Be( — 1/2, +00). This yields, via the Legendre transformation, the interval
of the singularity spectrum between the minimal value of the dimension of v,
amin = 0.94042... and the almost sure value aa.s. = 0.9957....
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This paper is organized as follows: in Section 1 we prove a Ruelle-
Perron-Frobenius theorem, in Section 2 we derive the regularity and strict
convexity of the pressure, and in Section 3 we apply these results to the
multifractal analysis of the measure vr

1. A RUELLE-PERRON-FROBENIUS THEOREM

We keep the same notations as in ref. 5, and, as in ref. 5, we first set
the theory in a simpler context, in order to simplify exposition, and then
we extend it.

Let Lxy the space of functions / on Xx S (S is the circle) such that
||f||ay,<oo where || ||ay = s u p X o , u | f ( x o , u ) | / | x 0 | y + s u p X o , u = v | f ( x 0 , u ) -

f(x0, v ) | / | x o | S ( u , v ) a . Let T B f (x 0 , u) =Exoe
Blog(|M(x

o
)u1/2|x

o
|)f(x1,M(xo)l/

2|x
o
|)f(x1, M(x0)u)

with Be( — l, +00), 0 < a < l and y > 0 . We first study TB, for positive p.
We are going to prove a Ruelle-Perron-Frobenius theorem for the
operator TB:

Theorem 1. Let B>0. Let TB f (x 0 , u) = EX0eB log(|M(x
o
)u1/2|x

o
|) x

f ( x 1 , M(x0) u). Then:

(1) There exists a simple maximal eigenvalue L(B) of T ( B ) with
strictly positive eigenfunction hB.

(2) The remainder of the spectrum of T is contained into a disk of
radius strictly smaller than L(B).

(3) It existe an unique probability vB, such that TBVB = L . ( B ) vB.

(4) L . - n ( B ) T n ( B ) f ( x 0 , u ) ^ h B ( x 0 , u ) \ X x S f ( x 0 , u ) d v B ( X o , u ) in La,r

Proof. The proof results of several lemmas.

Lemma 1.1. VB>0 we have ||TBf||ay<||f | | a y

Indeed let | f ( x 0 , u ) — f ( x 0 , v)| < |xo|
rS(u, v)a. We look for a condition

on B such that |T B f ( x 0 , u) - T B f (x 0 , v ) | < | x 0 | y S(u, v)a. We have (cf.
ref. 5):

and we state
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which gives the condition | M ( x 0 ) u | B / 2 B x o E X 1 P ( x l | x 0 ) (B | f | o o + l)|x1|
y<

|x0|
r or—if y<l and |f|oo<1—(cf. ref. 5) (2x0 + 4 ) ( 1 + B ) / 4 < 2 4 B with

x0 > 4, which is true for any ft > 0.
TB being positive, we consider the operator on M(XxS): T*

Bu =
T*(u/T*u(1).

Lemma 1.2. Let Ka={(x0, u) with x 0 <a, ueS}. Let F the set
of measures on Xx S such that u(Ka) < 1/a (with large a). Then T*

B preserves
r.

Indeed

and as |M(x0)ul/2 | x
o

|<1and c(x0)< 4 this expression is less than (1/2a-1 ) x
4[jk adu + jkc

adu]<(C/2a-1). We so ask C/2a-1<1/a id est Ma<2 a ,
which is Va>a' = y l o g M where y satisfies My = M y l o g M (here, if
M= 16, this is true for a>7) .

Remark. This lemma remains true also for B > — 1 , with minor
modifications.

F is a convex compact subset of M(Xx S), T*: F-* F is continuous.
By the Schauder-Tychonoff theorem there exists veF such that T*v = v
where ( T * v / T * v ( l ) ) = v. Let L(B) = T*B |v(l). We have L(B) > 0.

Lemma 1.3. Let A = { f e C ( X x S ) | | f | | X f < x , \f dv =1, f>0}
there exist he A such that TB

h = L(B)h .

Indeed by Lemma 1 TB is a contraction on A. Let Axo = {f: Xx S-> C,
f ( x 0 , - ) is continuous on S, sup u ( | f ( x 0 , u ) | / | x 0 | y ) + s u p u = v ( | f ( x 0 , u) -
f(x0, v)| / |x0 | r S(u, v ) a ) < oo}. AXo is uniformly continuous and uniformly
bounded. A = T I X o > X A X o is compact as countable product of the compact
sets (by Ascoli-Arzela) AXo. Let TB = ( T B / L : A->A. Then there exists
in A such that TBh = h (by Schauder-Tychonoff).

Lemma 1.4. h ( x o , u) is strictly positive.
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If there were a (x O , u) such that h(x0, u) = 0 then we had—as we are
going to see—h; = 0 (and if h = 0 from 0 < A = (< Th,v>/<h, v >/h,v>) = \ Th dv
= 0 we had a contradiction). So, let ( x 0 , u ) be such that h(x 0 , u) = 0.
Then 0 = Th(x0 , u) = EX1 P(x1| xo) e

Blog(|M(xo)u1/2|xo|) x h ( x 1 , M ( x o ) u ) which
implies h;(x1, M ( . x 0 ) u ) = 0 V(.x1,, M(.x0) u = v) such that the transition
.xO ->x1 . u-> v is allowed. Repeating this argument gives h ( x 0 , u) = 0 on a
dense subset of XxS, since our system has the following property (cf.
ref. 5).

Property *: "Ve>0, there exists NeN et p>0 such that V(.x, u),
( x 0 , u ) the N-step transition probability from ( x 0 , u ) to (y', w) is larger
than p and (y', w') is a point e-near to (x, u)."

In fact, the system has a stronger property, which we shall need below,
in constructing the invariant measure:

Property **: "Ve>0, there exists NeN and p> 0 such that V(.x, u),
(.x0, u) in the support of vB, the N-step transition probability from (x0 , u)
to ( x , u ) is larger than p."

Lemma 1.5. h is simple.

If f and g are two eigenfunctions, then, h = g— f has a positive and
a negative part (if g ( x O , u) > f(x0, u) V(x 0 , u) then 0 = | (g — f) dv (since
<f; v> = <g, v> = 1) with g>f give g = f ) . Let /l = {h>0} and B =
{h<0}. By using the above property (* or **) we see that A and B are
in fact two invariant, disjoint full measure sets, contradicting the ergodicity.
(indeed, ergodicity comes from the fact that vB = P ( x 0 ) vx B ( u ) is a measure
on XxS, such that P (x 0 ) is the only stationary measure for Pij (Doeblin,
see ref. 5) and v.xo,B(u) is discrete, with a dense orbite in S).

Let, by now, TBf = (L . - 1 T B hf /h) . Clearly, TB1 = 1.

Lemma 1.6. (inequality a la Doeblin-Fortet)

where p<1 and m a y ( f ) = supx, u = v ( | f ( x , u) - f(x, v ) \ | x | a S(u,v)a) and
|f|00 = sup x , u ( | f ( x ,u ) | / | x | y ) .

This estimation is proven in ref. 5.
We have to prove now that:

2' The remainder of the spectrum is contained in a disk of radius
strictly < 1.

3' There exists only one v: T*v = v.
4' Tn

Bf-» Jf dv in A.
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We start by proving the convergence 4'. Note first that:

41', sup f(x0, u) > sup Tf(x0, u) (since T is a contraction in A).

Let f* = limk_ m TnkBf, then f* e A if fe A, and we have:

4'2 sup Tn
Bf* = sup f*

To end, we prove that:

4'3 f* = constant.

We distinguish two cases:

(1) If the supremum is attained on XxS, sup f* = f*(x0, u} =
sup f* = f * ( x N , u N ) , In this case, sup TNf* = T N f * ( x N , UN] =
E e s

N
( y , v ) f * ( y , v) — f*(x0, u) = sup f*, where the sum runs over the (y,v)

such that the N-step transition probability from (XN,UN) to (y,v) is
positive, and S N ( y , v ) = M ( y ) - - - M ( x N ) v . But since E eS

N
(y,v)1 = 1, and

0 EeS
N

(y,v)1=1 and 0<f<*< sup f*, this implies f*(y, v) = sup f* V(y , v) such that the TV-step
transition from (XN, UN) to (y, v) has a positive probability. But this set is
dense in XxS (property *) so that f* = constant, (since f e A).

(2) If the supremum is not attained on XxS, one can show that:(10)

Claim. Ve>0, if S>0 then f*(x, u)> sup f*-d for (x, u)e a set
e-dense on X x S. ( so , f* = constant).

We use the property *. Let (xN,uN)eXxS the point of max for
TNf*, and let (ZN, vN)eXxS sufficiently near the point of maximum.
Then there exist N and p > 0 such that the N-step transition from (XN, UN]
to (y,v) has a probability larger than p and (y,v) is sufficiently near to an
arbitrarily chosen point (x, w). (N and p being uniform with respect to
this choice). This follows from the property *. Also, it follows that,
e
B l o g M ( y ) - . . M ( X N ) u N P N ( x - N - - - > y ) > b with b>0, where M(y) ••• M(xN) UN=V.

The set of (x, u) such that the N-step transition from (ZN, VN) to (x, u) has
probability > 0 is dense. Let us show that for such (x, u) we have
f*(x, u) > sup f* — S. If on the contrary there were a (y, v) (in this dense
set) such that

which we will rewrite in short by:
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and if we also denote by E z N ( eB l o g S
n

( u ) P N (u ) f*(u) h ( u ) ) / ( L B h ( z N ) ) the
expression for T N

B f ( z N , VN) we should have:

where H = inf f ;>0 and having used the inequality Ei Li(xi-xjLj) <
max,.Y,(l —Lj) where Ei,Li = 1, L i =0. Which is absurd being T N

B f ( z N , VN]
as near as we wish to sup TN

Bf(zN , vN) = sup f*

Corollary 1.7. f* = j f d v . Moreover, v is unique

We end with the Proof of 2' (the remainder of the spectrum): 2' is true
iff the spectral radius of TB restricted to the functions f e Lay with j fdv = 0
is strictly smaller than 1. But this follows by Lemma 6, which gives, for N
and k large and f with zero average, the estimate | | T N + k

B f | | a r < E . Indeed
m a r ( T N

B
+ k f ) < c ( B } | T k f | 0 0 + p n m a r ( T k f ) < c ( B ) | T k f | 0 0 +PN[c(B)|f|00 +

p k m a v ( f ) ] . But, since | T k f — | f d v | 0 0 goes to 0 when k —> co, if f has zero
average we will have |T k f | a o>0 so that if p< 1, for k and N large,
||TN + kf|| = m (TN+k f)+ , |TN+k f| <
||TN+k f|| = mar(T

N+k f) + |TN+k f|00<e

2. STRICT CONVEXITY OF THE PRESSURE

In this paragraph we show that P ( B ) = lim( l/n) log Tn
B1 is C2 and

strictly convex (Proposition 2.9 below)

Lemma 2.1. B--> TB is of class C2 on Lar

Indeed, as in ref. 5 one has that | |(d/dB2) TB f||arc if B>0.

Lemma 2.2. (Spectral theorem) Let TBo a class C2 operator on Lar

for B0>0. let L(B0)( = l) isolated simple eigenvalue of T with eigenfunc-
tion 1. Then one has the spectral projector N on the eigenspace of 1:
T ( B 0 ) = L ( B 0 ) N ( B 0 ) + Q(B 0 ) ,QN = NQ = 0.

Then VB positive we consider s-> T(B0 + sB). There exists a projector
N(s) such that N(s) 1 =h(s) and h(s) is eigenfunction of T(B0 + sB) with
eigenvalue L(B0 + sB):



26 Porzio

Lemma 2.3. (beauty of v) Let P(B0 + sB) =log L(B0 + sB) . Then

Indeed, it is sufficient to differentiate the relation T(B0 + sB) N(s) 1 =
L(B0 + s B ) N ( s ) 1 at s = 0.

Lemma 2.4. (Ergodic theorem) Pn(x) x vB(x0, u) almost surely

(on the dynamical system ( X N x S , ( ( x ) n - > ( x ) n + 1 , Sn(x, u)-> S n + 1 ( x , u)),
P,(x) x VB(x0 , u))). where Sn(x, u) = M(xn ... M(x0) u.

Differentiating two times the relation Tn(B0 + s B ) N ( s ) 1 = Ln(B0 + sB) x
N(s) 1 at s = 0, gives the

Lemma 2.5.

Lemma 2.6. (Ergodic theorem)

Let C2 = l im(l/n) J Exo(log(Sn(x, u)/2xo+ . . . x
n ) - n P ( 0 ) ) 2 dvB(x0 . u)• As

in ref. 5 we have
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Proposition 2.7. P(B) is C2 and strictly convex VB>0.

Indeed one has as in ref. 5 a2 = (d2P/dB2) > 0. The proof is exactly the
same but one plays with vB (instead of v). Indeed we remark that que
Vp(x0, u) is again esplicit and we find by differentiating the invariance equa-
tion T*v = v (cfr ref. 5) that V B ( x 0 , u) = P ( x 0 ) v (u, B), where the equation
for v is

where x0, x1 e X and u,Pe S.

Remark, (B negative) If 0>B> -1 we consider the norm || | |||ay =
supXo , u ( | f (x o ,u) l /2 x ° ) + supx 0 , u = v ( | f (x o ,u) - f ( x 0 , v ) | x 0 | r d ( U , v ) a 2 x 0 )
and we can prove that T is a contraction for this norm if |B| <y< 1/2.
Indeed with this choice we satisfy to the condition (analogue to Lemma 1:
| T B f ( x 0 , u ) - T B f ( x 0 , v ) | < 2 r x 0 d ( u , v)a. Similarly we obtain that P ( B ) is
regular and strictly convex for |B| < 1/2. Now, P is independent on the
chosen norm, as it is the limN__>00 TN1. In conclusion:

Proposition 2.8. F ( B ) is C2 and strictly convex (at least) for
B e ( - 1 / 2 , 0 0 ) .

3. MULTIFRACTAL ANALYSIS

In this paragraph we apply the thermodynamic formalism to the multi-
fractal analysis of Bernoulli convolutions. As in ref. 5, the operator TB, is
not sufficient, and we have to introduce a "joint" operator

where g(x0) = log 2||x0|| +1 and l ( x 0 ) = log y||x0||+1

Definition 3.1.(5) Let T1, T2 two positive real numbers. Let Ln,T1,T2

be the space of functions f:XxS->C such that ||f||nT1,T2 < oo where
||f||n,T1,T2 = sup x0,u(|f(x0,u)|/2T1||x0||(||x0||+1)T2)+ suP x0,u=v(|f(x0,u)-
f (x0 ,v)/2T1| |x0| |( | |x0 | | + 1 ) T 2>S(u , v ) n ) .

The preceeding theory applies and we similarly obtain the following
proposition: (cf. ref. 5), by using the spectral theorem and the implicit func-
tion theorem:
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Proposition 3.2. T ( B 1 , B 2 ) is a family of class C2 of bounded
operators of Ln,T1,T2 for B1 e( —1/2, +00) and B2>0. Moreover, let
G ( B 1 , B 2 ) = l i m n _ _ > 0 0 ( 1 / n ) l o g T n ( B 1 , B 2 ) 1 ( x 0 , u ) . Then there exists a func-
tion F, defined for Be(-1/2, +00), of class C2, such that F(0) = 0,
G ( B , F ( B ) ) = 0.

Definition 3.3. Let f(a + S) = sup Be(_1/2,00){(a + S)B-F(B)} where
S = (L —E log 2/E logB) = HD( vr)—where vr is the Bernoulli convolution
of the golden mean. Then via the Legendre conjugation we have:

Proposition 3.4. The function a-»f(a) is C2 and strictly convex
on [a00,a_1/2] where a00 corresponds to f(a00) = oo and a_1/2 corre-
sponds to f(a_1 / 2)= —1/2.

Proposition 3.5. For ae [a00, a_1/2] we have

This is the extension of the theorem proved in ref. 5 for small |a|. To a = 0
corresponds the almost sure value S = f(S) + S = 0.9957.... The dimension
of the support being equal to 1 it corresponds to a such that f (a + S) +
(a + S) = 1 which corresponds to B= — 1 (not attained here).

Remark. An explicit formula. The ergodic Theorem 2.4, and the
explicit iterative formula for V B ( x 0 , u) given an explicit expression for the
local exponent a.+ S as a function of B: a. + S = F ' (B) , generalizing the for-
mula for the a.s. dimension found in ref. 5. Also, DH(S a + S) = F ' ( B ) x
( l + B ) - F ( B ) .

Remark. We can recover from the matrix M(x) the value for a.min

and amax, (found in the literature, see ref. 4):

Indeed, the larger value taken by the limit of sequence a,n(x):
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—where s is the golden mean (— 1 + >/5)/2—corresponds to the case
M(xn) = ••• =M(x0) = (1 1) which gives S + am a x(n) = ( log(n+2)-
2n log 2)/2n log s that is S+ amax = (-log 2)/log s= 1.44.... The smallest
values is attained if one choose M(xn)= ••• = M(x0) = (1 1). One has
d + amin = (2 log(( 1 + v/5)/2)/4 log s) - (log 2/log s) = 0, 94042.... The almost
sure value S = f(d) = 0, 9957... corresponds to B = 0.
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